Agenda

TPM2 Software Stack (TSS2) in OSS

- Background
- Standardizing TSS2 in TCG
 - Components / Architecture
 - Intended use cases
- tpm2-software community
 - Purpose / goals
 - Participants, adoption & emerging use cases
 - Alternatives
- Musings
 - Interesting developments in TCG specs
 - TPM adoption in F/OSS community
TPM 1.2 vs TPM 2.0

TPM 2.0 resolves shortcomings of the 1.2 spec

- Use-case unchanged: keep keys out of main memory
- TPM 1.2 limited algorithm support
 - Require RSA 1k, 2k & SHA1, no larger key / hash sizes, AES optional
 - Single hierarchy, limited policy
- TPM 2.0 addresses shortcomings of 1.2
 - Flexible to support multiple algorithms & policy
 - PC Client spec requires RSA 2k, ECC P256, AES 128 & 256, SHA256 etc
 - Integrity protected and encrypted sessions
- Support for 1.2 is being phased out
 - Some OEMs dropping support for TPM 1.2 under Linux [1]
TPM2 SOFTWARE STACK (TSS2)

Design
API DESIGN / GOALS

Use-case driven design, integration with async programming

• Layered design, async throughout
 – Separate transport layer from APIs,
 – Async: suitable for integration with existing “event-driven” programming models
 – Details exposed if you need them, hidden behind “sane defaults” otherwise

• Lower layers of stack provide thin layer over TPM2 commands
 – Assume “expert” applications in thin environments, possibly w/o heap or filesystem
 – Minimal dependencies (libc)

• Upper layers provide convenience functions & abstractions
 – Adds dependencies on crypto libraries
 – Allocates memory on behalf of the caller
TCG TPM2 Software Stack: Design

System API (SYS)
- 1:1 mapping to TPM2 commands
- Async I/O
- No file I/O
- No crypto
- No heap

Enhanced SAPI (ESYS)
- Additional utility functions
- Provides Cryptographic functions for sessions
- No file I/O
- Requires heap / does memory allocations

Feature API (FAPI)
- Spec in draft form
- No implementation yet
- File IO
- Requires heap
- Must be able to do retries
- Context based state
- Must support static linking

TPM Command Transmission Interface (TCTI)
- Abstract command / response mechanism,
- Decouple APIs from command transport / IPC
- No crypto, heap, file I/O
- Dynamic loading / dlopen API

TPM Access Broker and Resource Manager (TAB/RM)
- Power management
- Potentially no file IO – depends on power mgmt.
- Abstract Limitations of TPM Storage
- No crypto

TPM Device Driver
- Device Interface (CRB / polling)
- Pre-boot log handoff
TCG TPM2 SOFTWARE STACK

System API, Type Marshaling, & TCTI

- **System API**: libttss2-sys
 - Transform C types to TPM command buffer
 - One-to-one mapping to TPM commands
 - Suitable for firmware / embedded applications

- **Type Marshaling**: libttss2-mu
 - Transform TPM types from C to wire format & back

- **TPM2 Command Transmission Interface**
 - Abstraction to hide details of IPC mechanism
 - libtss2-tcti-device + libtss2-tcti-mssim
TCG TPM2 SOFTWARE STACK

Enhanced System API: libtss2-esys

- Suitable for general C applications
- Builds on top of lower-level tss2-* libs
- Expose all TPM2 functions + utility functions
 - HMAC calculations for HMAC session
 - Encryption / Decryption for encrypted session
 - Maintain state for authorizations
- Adds dependency on crypto library
 - Current implementation use libgcrypt
 - Additional crypto modules under development
TPM2 RESOURCE MANAGEMENT

TPMs are resource constrained: small & inexpensive

- RAM on the order of “a few kilobytes”
- Scarce resources must be shared
 - TPM commands specific to object and session management:
 - ContextLoad, ContextSave & FlushContnext
 - Resource Management: Saving & Loading “contexts”

- Isolation through Resource Management
 - Associate objects (keys, session) with connection
 - Prevent access by other connections (with exceptions)

- Components of resource mgmt. tasks moving into kernel driver
 - /dev/tpmrmm0: performs simple object / session isolation & load / save
 - Currently aligning user-space daemon w/ in-kernel resource mgmt.
TSS2 IMPLEMENTATION & NEW USE CASES

Bootstrapping & expanding community
FROM PROTOTYPE TO OSS PROJECT

Stability & Reliability

- Align development model with community norms: know your audience
- Semantic versioning scheme: https://semver.org
- Model a healthy OSS project
 - Align to a coding standard (always an uphill battle)
 - Testing: unit & integration, make adding new tests easy
 - Continuous Integration (CI): travis-ci, coveralls, coverity / static analysis
- Eliminate high priority technical debt
 - Make it debuggable
 - Complete re-write of resource mgmt. daemon
TPM2-SOFTWARE PROJECT GITHUB

Community dedicated to development and use of TCG TSS2 APIs

- **TPM2 Software Github Org:** https://github.com/tpm2-software
 - Core libraries: https://github.com/tpm2-software/tpm2-tss
 - Resource Mgmt: https://github.com/tpm2-software/tpm2-abrmd
 - Command line tools: https://github.com/tpm2-software/tpm2-tools
 - Mailing list: https://lists.01.org/mailman/listinfo/tpm2
 - #tpm2.0-tss on Freenode

- **Community**
 - Maintainers from: Intel, Fraunhofer SIT (tss2-esys), RedHat
 - Patches from: Facebook, Alibaba, Suse, RedHat, Debian

- **Impending Projects**
 - PKCS#11 module, OpenSSL Engine
Automate Common Tasks

- Often times a user’s first experience with the TSS2
- Started as a clone of the IBM command line tools from TSS for TPM 1.2
- Has evolved into a near 1:1 mapping to TPM2 commands
- Individual tool execs can be strung together to achieve a higher level task
 - Create policy assertion
 - Create object bound by policy
 - Save object to disk
- Adding new tools on demand
Support and Usage in OpenEmbedded, RHEL & Suse

- **OpenEmbedded upstreaming efforts underway**
 - Maintained as part of meta-measured
 - Planning effort to upstream into OE proper: reduce duplication
 - Integrate config fragments with yocto-kernel-cache via MACHINE_FEATURrCS
 - Integrate kernel module packages into packagegroup-base
 - TSS recipces in openembedded-core, included by DISTRO_FEATURCS?

- **RHEL 7.4 - 1.x releases of TSS2 libraries as “official” package**
 - Working to align 2.0 TSS2 release to RHEL 8
 - Clevis supporting TPM2 module [6]

- **Suse adding support in next major SLES release**
NEW USE-CASES: AC_* COMMANDS

Attached Components (AC)

- TPM2 is useful for key protection, not so great for usage
 - Create, use keys in shielded location
 - Rich policy governing key use
 - TPM often referred to as a “crypto decelerator”

- AC Commands
 - Allow for TPM to release unencrypted keys to attached components [2]
 - Extend policy to include AC
 - “attached” is loosely defined: not over command channel
 - Use-case driven: Encrypted SSDs, crypto accelerators
Healthy OSS always has options

- **Google / ChromeOS: Chaps [8]**
 - “Chaps” daemon brokers access to TPM device
 - PKCS#11 module communicates with Chaps over dbus
 - OSS, but not a “Google project”

- **IBM [9]**
 - Non-standard API
 - Effectively TCTI, SYS & ESYS rolled together
 - No async operation
 - 3 functions
 - Create & Delete context object
 - Execute TPM2 command: command code passed as parameter, varargs
 - Stated goal is simplicity, maybe too simple
MUSINGS

Other Interesting Stuff
Device identity composition engine (DICE)

- First TCG spec I’ve read in one sitting – 12 pages
- Intended for small devices, too small for TPM2
 - TPM2 identity schemes establish identity through possession of key
 - DICE combines unique secret with hash of “first mutable code” -> CDI
- DICE itself is root of trust, updates permitted but not apparent in CDI
- CDI susceptible to replay
 - First mutable code to prevent access after launch
 - Fixing bugs in first mutable code -> new CDI
- Trend: shift from platform identity to identity of individual parts
TPM2 IN FOSS

FOSS TPM adoption & ingredients to build your own

- **Purism**: security and privacy focused laptops
 - Offered optional TPM: Reported 98% of orders opted for TPM at additional $99 [3]
 - Purism Librem laptops shipping with TPM by default (1.2 😊)
- **Microsoft** released reference code from spec as OSS [4]
 - See CONTRIBUTING.md – changes to some parts -> changes to TCG spec
- **Stefan Berger** libtpms & swtpm
 - Integration with QEMU in 2.11 [7]
 - Subsequent integration / backport to QEMU 2.10 for openembedded & meta-iot-refkit
- **Google's ChromeOS / platform**: OSS, but not a “google project”
- Pick your TPM2 code, add TEE / hardware (Cortex M?)
REFERENCES

