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ABSTRACT

We describe our work to demonstrate an enhanced SMI
transfer monitor (STM) to provide protected execution ser-
vices on the x86 platform. An STM is a hypervisor that
executes in x86 system management mode (SMM) and func-
tions as a peer to the hypervisor or operating system. The
STM constrains the SMI handler, by hosting the handler
in a virtual machine (VM). Otherwise, the SMI handler
holds unconstrained access to the platform, which could un-
dermine the assurance provided by D-RTM or TXT. Our
STM enhancements create a protected execution capability
by extending the STM to support additional VMs (PE/VM).
These enhancements utilize the existing capabilities of the
x86 processor and, thus, require no additional hardware. We
modified an existing hypervisor integrity measurement en-
gine to function in a PE/VM. The related discussion ex-
plains how the module can be loaded from a guest virtual
machine and how page tables are used to restrict the access
that the measurement engine is allowed to memory.

Categories and Subject Descriptors
D.4 [Operating Systems]: Security and Protection

General Terms
Design, Security

Keywords
Protected execution, SMI transfer monitor, system manage-
ment mode, security, integrity measurement

1. INTRODUCTION

Protected execution (PE) provides software with the assur-
ance that it can neither be observed nor be tampered with
by the platform. This protection includes preventing the op-
erating system and 1/O devices from accessing the protected
execution memory. Protected execution is not the same as
secure execution. Secure execution is concerned with en-
suring that a program does what it is supposed to do[16].

Hardware mechanisms are customary to provide this protec-
tion either as a physically separate device, which implements
the protected code module, e.g. hardware security module
(HSM) or integrity monitoring [18]. An example of a physi-
cally separate device is a cryptographic coprocessor that in-
ternally contains cryptographic software. The cryptographic
coprocessor presents the appearance of an I/O device to the
rest of the platform. There are commercial devices currently
on the market that can accept general purpose programs for
execution and provide those programs with the same protec-
tions as their native applications[13]. Alternatively, software
may configure general purpose hardware mechanisms such
that no other entity within the system can violate the config-
ured protections. Hardware introduces significant financial
costs to achieve the desired platform security, and software
introduces significant flexibility costs to preserve platform
security.

Two different categories of applications benefit from the as-
surance provided by protected execution. The first category
is defined by those applications that require protection of
long term secrets, i.e. cryptographic key. The separation
established by an operating system for a process or provided
by a hypervisor for a virtual machine is insufficient to meet
this requirement because the operating system or hypervisor
have direct access to the sensitive data. The second category
is defined by those applications that are trusted to monitor
or evaluate platform integrity[14]. Without protected execu-
tion, the results returned by the monitor program is suspect
as there will always be the possibility that the program may
have been tampered as it shares the same memory space
with the operating system or hypervisor and, therefore, is
subject to tampering by anything that executes within the
operating system’s memory.

Coprocessors provide a suboptimal implementation for pro-
tected execution, especially for measurement software. A
coprocessor means that an additional device is added to the
platform. Thus, for space and cost reasons, a coprocessor
may not be practical for all platforms such as a laptop or
other mobile device. Also, measurement software that exe-
cutes on a coprocessor is easily spoofed because the platform
software may manipulate the coprocessor’s view of mem-
ory by configuration of the DMA protections. Further, co-
processor hosted measurement software does not have any
visibility of the processor registers such as the CR3 or the
page table pointer, which must be reliably accessed to en-
sure that the monitor provides an accurate report of the



platform execution. A PE solution that utilizes a mode of
the Intel x86 processor' called system management mode
(SMM) is described in the remainder of this paper. The ap-
proach requires no additional hardware to provide protected
execution, preserves platform flexibility, protects long-term
secrets, and provides reliable access to critical platform reg-
ister state. We describe our implementation in support of
a novel hypervisor integrity monitor based on research pub-
lished previously[14].

2. BACKGROUND
2.1 Xhim

An example of a measurement engine that requires PE is
XHIM[11]. This engine is based on the Linux Kernel In-
tegrity Measurer (LKIM)[14]. XHIM is focused on measur-
ing the relationships between the variables and their criti-
cal state within Xen[3]. In addition, The Xen text section
is measured by computing a hash of its current state. Fi-
nally, security relevant state information of the processor
and chipset is obtained. All of this information is exported
to an external appraiser. Xhim was originally implemented
to run alongside the Xen kernel.

XHIM has three basic requirements that must be met. It
needs access to processor state information, it must be self-
contained, and must has assurance that it will not be mod-
ified during its execution. Hardware state information is
necessary because some protections that are established can
be affected by modifying privileged processor registers such
as model specific registers (MSR) and the control registers
(CRx). Self-contained means that it is not dependent on ex-
ternal libraries. The examples used in this paper are based
on the XHIM PE implementation.

2.2 System Management Mode

System management mode (SMM) is an operating mode of
the Intel x86 processors that provides a protected execu-
tion environment for platform functions. When the proces-
sor enters SMM, it has access to a separate address space
called system management ram (SMRAM), which can be
configured to be inaccessible from the other operating modes
and effectively provides a protected execution environment.
Only platform processors in SMM can access SMRAM. Also,
SMRAM is protected from access by I/O devices. However,
SMM is the most privileged processor mode as software ex-
ecuting in this mode can access all physical memory and
devices. In addition, SMM may see all platform registers as
well as modify privileged registers such as CR3.

Two separate, non-overlapping, memory segments define SM-
RAM: the ASEG and the TSEG. The ASEG is the origi-
nal SMRAM. It and the legacy graphics region share the
same address space. The ASEG is addressed only when the
processor is in SMM. Otherwise the graphics region is ad-
dressed. The TSEG is a configurable memory region that
enjoys SMRAM protections.

SMM can be entered only via a system management inter-
rupt (SMI). This interrupt causes the processor to set its
mode to SMM, to save the current state into SMRAM, and
to start execution at a specified location within SMRAM.

n this paper, logical processor and processor are the same.

The module executing in response to an SMI is called an
SMI handler. While in SMM, all interrupts are inhibited
allowing the SMI handler to execute without interference.
SMIs are usually generated in response to a hardware event,
though in certain platform specific instances an SMI can be
triggered from software. Exiting SMM is done by issuing a
return out of SMM (rsm) instruction. When executed, the
processor restores the saved entry state, changes its mode
to the previous mode, and continues executing at the inter-
rupted location. During the process of entering and leaving
SMM, the operating system is usually unaware of it happen-

ing.

SMM is an example of protected execution since the code
and data within SMRAM are protected from observation
and interference from all platform processors that are not in
SMM and from all I/O devices. However, it is the respon-
sibility of the code executing in SMRAM to protect itself
by configuring the hardware to prevent such accesses. This
suggests that SMM is an ideal platform mode for hyper-
visor integrity monitoring because the monitor can execute
without interference[17]. Otherwise, the monitor would have
to share the same address space as the hypervisor, limiting
the reliability of the monitor due to potential for compro-
mise of the hypervisor. However, one must also consider the
threat to the platform by the SMI handler as it is located in
SMRAM. Some efforts have attempted to co-exist[20] with
the SMI handler and others have attempted to eliminate the
SMI handler[1]. Co-existence means that the monitor shares
the same address space with untrusted code in the SMI han-
dler. Elimination of the SMI handler is not feasible because
the SMI handler provides critical platform functions, e.g.
thermal event handling. A solution that allows for SMM
to be used for protected execution and allows for the SMI
handler to co-exist in this environment will be discussed in
the next section.

2.3 SMI Transfer Monitor

A SMI transfer monitor? (STM) is a simple hypervisor that
executes on a root-VM (virtual machine) during SMM while
the dual-monitor treatment (DMT) is active. DMT was in-
troduced as part of the Intel x86 virtualization technology
(VTX)[6]. DMT provides full VIX support during SMM.
The legacy SMM mode, which was discussed in the previous
section, is the default treatment in Intel terminology. The
STM is designed to be BIOS agnostic and should be usable
with any platform that has a BIOS conforming with the In-
tel STM architecture specification[8]. The STM is located
in the monitor segment (MSEG), which is contained in the
upper addresses of the TSEG discussed in the previous sec-
tion.

When the dual-monitor treatment is active, there are two
hypervisors functioning as peers on an x86 platform. One
is a platform hypervisor, such as Xen, or a platform op-
erating system, such as Linux. The second is the STM,
which controls the guest-VM that hosts the SMI handler.
Both the platform hypervisor and the STM execute in a
root-VM, which is the controlling VM. All guest-VMs are
initiated from the root-VM. The active hypervisor depends

2Also called SMM transfer monitor. The Intel documenta-
tion uses these terms interchangeably.
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Figure 1: SMI Transfer Monitor (STM) Protections:
When the processor is not in SMM, the chipset pre-
vents the processor from accessing SMRAM where
the STM and SMI handler are. When the processor
is in SMM, a VM encapsulates the SMI handler.

on the processor mode. When the processor is in non-SMM,
the platform hypervisor is active. When the processor is in
SMM, the STM is in control.

An STM reduces the size of the trusted computing base
(TCB) by isolating and effectively removing the SMI han-
dler from the measured launch environment (MLE). This is
the execution environment that exists at the completion of
the dynamic root of trust measurement[12] (D-RTM). The
Intel terminology for D-RTM is Trusted Execution Technol-
ogy (TXT)[7]. The MLE provides a protected known exe-
cution environment to begin the startup of a trusted kernel.
The runtime assurance of the MLE, which was launched by
TXT could be compromised without an STM[19]; because,
software executing in SMM has unrestricted access to the
platform. SMM software can be compromised by an attack
upon SMM][10]. Thus far, it has been shown that an STM
mitigates several known SMM attacks[21, 23, 22, 5]

Figure 1 shows how the protections are applied depending
upon the mode of the processor. Since the SMI handler is
now encapsulated by a virtual machine, its accesses to the
rest of the platform are constrained by the guest-VM’s page
tables. In addition, the guest-VM’s access to I/O ports and
MSRs are also constrained by settings in the guest-VM’s
VMCS. A VMCS or virtual machine control structure is an
x86 processor data structure that defines a virtual machine.
The STM is responsible for properly setting up these tables
in accordance with the security policy. However, the STM’s
access to the platform has no constraints. The STM has to
be evaluated to ensure that there are no improper accesses.
Fortunately, the STM is designed to be thin, performs lim-
ited functions, is relatively easy to understand and fits the
notion of a small trusted computing base (TCB).

The STM discussed in this section was developed by In-
tel and conforms with the Intel STM Architecture Specifi-
cation[8]. The Intel STM recreates the default treatment
SMM environment in a VM expected by the SMI handler.
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Figure 2: SMM Dual Monitor Treatment VM-exit
types: (1) SMI converted into VM-exit; (2) Root-
VM vmcall instruction; (3) VM-exit from SMM
guest-VM because of ether a rsm instruction, vmcall
instruction or configurable condition

A single page table is shared by all SMI handler guest-VMs,
giving all SMI handlers the same view of memory.

2.3.1 STM Interactions

When DMT is active, all transitions into SMM result in a
VM-exit. Normally, a VM-exit is a transition from a guest-
VM to a root-VM, and a VM-exit can be the result of a vari-
ety of events. One of these events is when a guest-VM uses
a vmcall instruction, which is used to request a service
from the root-VM. However, a root-VM normally cannot
use a vmcall instruction and its use by a root-VM normally
results in a fault. When DMT is active, the behavior of a
vmcall instruction changes to when a root-VM executes a
vmcall; the result is a VM-exit into SMM. Included in the
change in transition behavior are SMIs, which are converted
into VM-exits as well. Finally, a third way a VM-exit occurs
is as a result of either a condition or a vmcall instruction ex-
ecuted in an STM guest-VM. The conditions that cause a
VM-exit are defined in the VM’s configuration. Figure 2
illustrates the different VM-exits into a SMM during DMT.
When a STM receives a VM-exit caused by an SMI, the
STM starts the SMI handler guest-VM to process the SMI.

Normally, all processors respond to an SMI by entering SMM.
When the processor in in DMT, the processors still go into
SMM, except now SMM entry is via VM-exit. When the
STM receives a VM-exit that is caused by an SMI, it switches
to the VMCS of the guest-VM that runs the SMI handler.
The STM ensures that the relevant SMRAM memory areas
are initialized to replicate the environment that is expected
by the SMI handler during the default treatment. When the
SMI handler has completed its tasks, it normally uses a rsm
instruction to switch the processor out of SMM back to its
original state. Under DMT, the result of this instruction is a
VM-exit, which is received by the STM. Upon receiving the
VM-exit, the STM restores the SMM-transfer VMCS and
issues a vmresume instruction, which restarts the peer VM
along with the interrupted state.



The STM interface with the operating system is the vm-
call instruction. In this case, if the root-VM executes a
vmcall then a VM-exit into SMM results for that processor.
However, in contrast to SMI handling, only one processor
enters SMM. All other processors are unaffected by this ac-
tion. The STM checks the VM-exit status to determine that
this VM-exit is the result of a vmcall instruction instead of
an SMI. In this case, the STM vectors to its application
program interface (API) handling section to deal with the
request from the peer root-VM][8]. Once it has finished pro-
cessing the request, it executes a vmresume instruction to
restart the peer root-VM.

2.3.2 STM Startup

Starting an STM requires cooperation between the BIOS
and the MLE. The STM image is included as a part of the
BIOS image. During platform startup, the BIOS ensures
that the STM’s identity and integrity are acceptable before
copying the STM image into the MSEG. If the STM has
passed the BIOS checks, the BIOS sets a flag in a MSR3,
which indicates that a STM has been loaded into the MSEG.
Before starting TXT or D-RTM, the MLE indicates that it
supports a STM. If so, the STM image is measured dur-
ing TXT, and the STM’s hash is extended into PCR 17 of
the TPM[7]. As a part of this process, the STM’s dynamic
memory region is also zeroed, which effectively initializes
the STM. The MLE or the launch policy evaluates the STM
measurement and, if satisfactory, continues the STM launch
process. Since the STM is measured as a part of TXT, any
tampering of the STM image should show up in the hash.

To launch the STM, the MLE executes a vmcall instruction,
which causes a VM-exit in SMM. This initial SMM VM-exit
activates DMT. Prior to this vmcall instruction, the MLE
has to setup a control VMCS that will be used during the
initial SMM VM-exit. The VM-exit controls and host state
necessary to initialize the STM is based upon the contents
of the MSEG header and fixed values from the firmware.

The STM has to create two VMCSs during its initialization.
The first VMCS is used to manage the STM’s peer, which is
the MLE/hypervisor; this VMCS is called the SMM-transfer
VMCS. The guest portion of the SMM-transfer VMCS is
populated with information from the guest portion of the
control VMCS previously created by the MLE. The host
portion of the SMM-transfer VMCS is filled with the neces-
sary information, such as the STM entry point, which starts
the STM root-VM when any subsequent VM-exit caused by
a vmcall instruction or an SMI.

The second VMCS defines the SMI handler’s guest-VM and
is called the BIOS VMCS. This VMCS is created based on
the information contained within the SMM descriptor data
structure. This holds the SMM VM guest entry state for
each processor and is created by the BIOS. In addition, it
holds the SMI handler location. The STM creates page ta-
bles for the SMI handler guest-VM based on this informa-
tion. However, these tables are generated such that the SMI
handler has access only to its pages within SMRAM. No ac-
cess to the STM’s address space is permitted. SMI handler
access to memory external to SMRAM is not defined at this

3This MSR bit can be set only during SMM.

time. These accesses are later created based on a combina-
tion of the BIOS resource list and the MLE’s restrictions.

Once the STM resource list has been configured, the MLE
issues a vmcall instruction to the STM to start operations.
This call must be done for each processor where each proces-
sor initializes its STM data structures including establishing
the two VMCSs described previously. When each proces-
sor has completed the STM initialization, the processor ren-
dezvous. Once all processors have completed initialization,
the rendezvous allows all processors to simultaneously exe-
cute a vmresume to return to the MLE. During this return,
each processor enables SMIs?.

2.3.3 STM Security Policy

The STM controls the SMI handler’s actions on the basis of
platform resources and by domain. The resource access is
controlled based on the contents of the STM resource list.
The STM resource list is created from the BIOS resource list
and the resources requested by the MLE for its protection.
A resource is anything that can be addressed within the
platform, to include memory, PCI addresses, I/O addresses,
and MSRs. The BIOS resource list is provided by the BIOS,
and incorporated into the STM resource list during initial-
ization. This list static and does not change at runtime.
The STM resource list is built on a single processor and the
effect of the resource list is global.

The MLE can request that the STM prevent access to spe-
cific resources. It also can request the full contents of the
BIOS resource list as well. In case of conflict, the BIOS’s
access request takes priority. The reasoning behind this is
that if the BIOS cannot access a resource, then it cannot
function properly. However, the MLE does have the option
to not bring up the STM or it can inform the administrator
that the BIOS is requesting access to resources that seem
inappropriate. A conflict in a platform that had no previous
resource conflicts is a good indicator that something is wrong
and should be investigated for unauthorized configurations.

When the SMI handler attempts to access a resource, the
STM resource list is consulted. Unless access to a resource
is explicitly denied, access is granted. In the event that the
STM blocks access to a resource, the SMI handler can pro-
vide an exception handler to deal with the situation. Oth-
erwise, the STM will record the error and reset the system.

Domain access checking uses a VMCS pointer database,
where each VMCS represents a VM or a domain. When
an SMI causes a VM-exit, this database is checked to see if
the interrupted VMCS is in the database. If so, the STM
will scrub the register state that the SMI handler would nor-
mally receive. This action is intended to prevent the SMI
handler from seeing sensitive information held within a do-
main. It is the responsibility of the MLE to maintain the
VMCS database and the MLE can configure how restrictive
the STM is to be when a particular domain is interrupted.

2.3.4 Discussion

41f there is an STM, SMIs are inhibited when the MLE gains
control from TXT. If necessary, the MLE can enable SMIs.
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Figure 3: STM/PE Overview

The STM is a capability that the MLE can use to protect it-
self from the SMI handler. Like any of the other protections
provided by the platform such as the DMA (VT-d) protec-
tions, the MLE still has to decide how each protection is to
be configured. The STM provides a single command for the
MLE to turn off BIOS access to any resource that it has
not claimed. The MLE can also restrict access to a sub-
set of the unclaimed resources as well. The STM provides
the list of resources that the BIOS requires access. This in-
formation provides evidence for the system owner to query
the BIOS developer about accessing platform resources that
MLE deems sensitive. Properly used, the STM can improve
the overall security of the system by ensuring that the SMI
handler can only access platform resources that it needs.

3. STM/PE

This section describes an implementation of protected exe-
cution on a STM (STM/PE). Protected execution is imple-
mented by modifying the STM to support additional guest-
VMs (PE/VM) as shown in Figure 3. PE/VMs enjoy the
same protection from external observation that the SMI han-
dler VM has. Also, all of the STM guest-VMs normally
do not have permissions to access any of the other guest-
VMs. In addition, PE/VMs have greater restrictions placed
on their accesses than the SMI handler VM. A PE/VM is
not allowed any I/O access nor any access to MSRs. Aside
from a shared memory region, a PE/VM only has access to
SMRAM memory that is assigned to it. The shared mem-
ory is intended to be a communications buffer between the
PE/VM and an agent on the host system. In the figure,
both PE/VMs each have a shared memory area. The tem-
porary PE/VM is sharing its buffer with a host process while
the permanent PE/VM, which is the measurement PE/VM,
is sharing its buffer with either the VMM or an external
agent. Temporary and permanent PE/VMs are discussed in
the next section.

3.1 PE/VMs

3.1.1 PE/VM Types

STM/PE currently supports two different types of VMs:
temporary and permanent. A temporary PE/VM only runs
for a configured maximum amount of time and is then dis-
mantled. It is intended for a user application that has a need
for protected execution and the compute time is bounded.
Since SMRAM space is limited and the allocated processor
is bound to the PE/VM for the duration of the PE, there

should be only one temporary PE/VM executing at a time.
If a temporary PE/VM is executing and another application
requests a PE/VM, the requesting application will receive a
busy return. In this case, the requester should wait and try
later to request a temporary PE/VM.

The permanent PE/VM is intended to contain a measure-
ment agent that is at the lowest layer of a hierarchy of run-
time measurement agents. Since this measurement agent is
in a protected space, it can effectively serve as the anchor for
the measurement agents above. The loading of the measure-
ment agent needs to be done just after D-RTM and before
the STM is stared to ensure that no malicious software gets
loaded in its place. The ability to load a permanent PE/VM
is disabled once the STM is started by the MLE. If there is
no permanent PE/ME, the MLE configure the STM to dis-
able the ability to establish a permanent PE/VM. A perma-
nent PE/VM is never dismantled unless it terminates due
to some error condition and only if the STM is configured to
dismantle the permanent PE/VM. Otherwise, the PE/VM
resources will be retained for subsequent executions. After
the initial run, a permanent PE/VM can be executed again
by a vmcall command.

3.1.2 PE/VM Guest Physical Address Layout

A PE/VM’s guest physical address space is divided between
SMRAM (MSEG) and the host machine physical address
space (non-SMRAM). The SMRAM space is used for the
PE module. The non-SMRAM addressable regions are used
for a shared buffer and, in the case of a permanent PE/VM
read only regions that are used for measurement. The shared
regions are located in non-SMRAM areas and are identity
mapped from the PE/VM guest physical address space to
the host physical address space. The STM security policy
prevents any pages located within SMRAM from being iden-
tity mapped into a guest-VM physical address space. A data
structure defines the memory associated with the PE/VM
and also the PE?VM configuration as well. All pointers are
physical addresses because the STM understands only phys-
ical addresses. The variables described below are in Module-
Info, which is described in greater detail in the appendix.

The executable module and its associated data are located
within the MSEG area and mapped into the PE/VM guest
physical address space. The guest physical start address
of the address space is AddressSpaceStart and its length
is AddressSpaceSize. These locations are mapped into SM-
RAM. The module is contained within this region. The mod-
ule’s start address is defined by ModuleStartAddress and its
size is ModuleSize. The module entry point is ModuleEntry-
Point. This allows the executable module to have protected
data memory both above and below the executable. The ar-
eas outside of the module are read-writable while the module
itself is execute-only. The current implementation limits this
region to 1 megabyte in size and that limitation is mainly
due to the limited size of the MSEG. Figure 4 shows how
the addresses are related.

Two pointers describe the PE/VM host memory. The first
pointer is the RegionList, which is a list of read-only regions
in host memory accessable by a permanent PE/VM. The
intent is to provide read-only access to hypervisor or kernel
memory for a measurement agent executing in a PE/VM.
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Figure 4: Memory layout for a permanent PE/VM.
Layout is defined by data structures in Figure 5.
The area shaded in gray is SMRAM. The regions
outside of SMRAM are host memory.

The second pointer is called SharedPage and it points to a
multi-page read-write region that is a communications buffer
between a PE/VM and an outside agent. Both a permanent
and a temporary PE/VM have a shared region.

3.1.3 Example: Memory Setup for XHIM

This example starts after Xen has done the vmcall as ex-
plained in section 3.4. Figure 5 illustrates the ModuleInfo
data structure, the region list, and the XHIM image being
copied to the STM heap, which is located in SMRAM. At
this point, the STM has been entered by a VM-exit and the
STM has copied the ModuleInfo data into an internal data
structure. The STM validates all of the addresses to ensure
that they do not violate policy. If all addresses are valid, the
XHIM image is copied to a block allocated in the STM heap.
When the STM builds the page tables for the PE/VM, the
XHIM image, shared region, and the regions in the region
list will be mapped into the PE/VM as shown in Figure 4.

3.1.4 SMRAM Available for PE/VMs

The amount of memory available for PE/VMs is, in part,
dependent upon the size of the MSEG that is configured
on the platform. On the development system, the MSEG
size was configured to be 3,145,278 bytes (or 0x300000).
The STM and its associated static data take around 495000
bytes. This leaves 2,650,112 bytes for heap storage, which is
used to allocate VMCSs, the BIOS resource list, and page ta-
bles. On an eight-processor system, around 2,300,000 bytes
of heap space are left for PE/VM allocation. The maximum
PE/VM memory size is arbitrarily set at one megabyte to

Moduleinfo
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Figure 5: Moving Xhim and configuration informa-
tion into MSEG. These data structures create the
memory layout illustrated in FIgure 4.

get around issues of heap fragmentation and to leave space
for page tables. The module space is allocated as a single
contiguous area of up to one megabyte. A future version
could allocate the module space in page size chucks, as this
approach was chosen simplify the implementation.

A future version could make more than 250 megabytes of
SMRAM available for PE/VMs. By definition, SMRAM is
a memory area accessible to the processor only while it is
in SMM, and protected from DMA. The DMA protected
range (DPR)[7] can be used as additional SMRAM. The
DPR is a region of memory that is adjacent to the TSEG. By
adjusting the system management range register (SMRR) to
include all or part of the DPR, the available SMRAM can
be increased. The DPR is configured by the BIOS and this
region is where the TXT heap and the SINIT region may be
located depending upon the platform configuration, which
reduces the maximum size available for SMRAM use.

3.1.5 Performance

In the literature, it is noted that code in SMRAM executes
slower than code located in system RAMJ[1]. This is be-
cause most implementations that run in SMM turn off SMM
caching due to the risk of cache poisoning attacks[22]. How-
ever, Intel has modified their processors to mitigate these
attacks. The Intel STM Specification provides guidelines for
configuring the processor and invalidating the cache during
SMM transitions. STM/PE implements the Intel guidelines.

The performance testing of STM/PE showed a significant
difference when using cache while in SMM as opposed to
turning the cache off. XHIM was tested in how long it took
to start up and then measure Xen. The start time was taken
immediately before the vmcall instruction and the finish



time was taken immediately after the vmcall instruction re-
turned, with the difference providing the run time. With the
cache disabled, XHIM took 1811ms for the initial run where
the PE/VM along with its page tables had to be setup. Sub-
sequent runs took 1681ms. With cache enabled, the initial
run took 24ms and the subsequent runs took 23ms. Round
trip with cache enabled, where only a rsm instruction was
loaded and executed, was .63ms for the initial run and .54ms
for subsequent runs. According to the XHIM developer, the
execution time for XHIM in SMM with cache enabled is
comparable to running it in system memory.

3.2 STM/PE Implementation

To support protected execution, the Intel STM was modi-
fied to support additional guest-VM types. The STM has
two VMs per processor: one for the SMI handler and the
second for the peer (MLE/Xen). STM/PE adds three guest-
VM types that can be assigned to any processor as opposed
to being dedicated to a processor for the SMI handler and
peer VMs. Since the SMI handler VMs share the same page
table, this means that the page table management had to
modified to support additional VM types. Also, VM-exit
handling and the security policy were modified to account
for additional VM types.

3.2.1 Page Table Modifications

The STM page table management was extended to handle
memory mapping and to handle multiple page tables. The
original page table implementation for the SMI handler VMs
was designed to handle identity address mapping. This is
because the SMI handler only dealt with machine physical
addresses in the default treatment and remained in the same
physical location in both the default treatment and the dual-
monitor treatment.

However, a PE module is promised a contiguous guest phys-
ical address space where the addresses start at a configured
location and these pages are mapped into SMRAM. Which
means that the STM/PE pager deals with address mapping
like a normal page table handler. Also, it is desired that the
PE module developer be able to configure the VM to use
an addressing mode that meets the module’s needs. In this
implementation, it is possible to configure an address space
that does not require the developer to implement page ta-
bles. However, the module is free to create and manage
its own page tables and to change the processor addressing
modes.

STM/PE supports four sets of page tables with each set
being designated for a VM type. Page table 0 is for the SMI
handler VM, page table 1 is for the permanent PE/VM,
page table 2 is for the temporary PE/VM, and page table 3
is currently intended for the SMI handler measurement VM.
The PE/VM types are discussed in section 3.1.1. The SMI
handler measurement VM is proposed to measure the SMI
handler VM and will have visibility into the SMI handler
address space. There is no design limit for the number of
page tables aside from the amount of memory available in
SMRAM.

3.2.2  Security Policy Changes
The STM resource list was modified to support additional
VM types by having an STM resource list for each type.

This allowed for common code to do the security checking.
The appropriate resource list is checked upon an initial ac-
cess and the appropriate hardware data structures, such as
page tables, are updated to allow the hardware to do the
enforcing. The access policy was modified for PE/VMs. If
the VM is an SMI handler VM, then the default access pol-
icy is followed, which is if a resource is not explicitly denied,
then access is allowed. In this case, explicitly denied means
the resources that the MLE has designated that it wants to
be protected. For PE/VMs, the policy is to deny access if
the requested resource is not on the STM resource list. In
summary, the difference in the access policies is in how the
undefined accesses are handled.

3.2.3 VM Creation and Termination

The capability to create and terminate VMs was added to
the STM. An unmodifed STM’s VMs are always perma-
nent. A PE/VM can be created and terminated at any time.
They are also different because a PE/VM’s page tables have
to support a mixture of identity mapped and non-identity
mapped pages, and a variety of addressing modes are al-
lowed. In contrast, an SMI handler’s page address transla-
tions are normally identity mapped.

VM creation starts by configuring the memory described in
ModuleInfo as describled in Section 3.1.2. Once all of the
resources have been allocated, the PE/VM VMCS is then
initialized. The VMCS guest state and the processor ad-
dressing modes are based on the information provided by
ModuleInfo. The VMCS configuration is checked both by
the STM and the hardware, any problems are reflected back
to the requestor. Prior to the launch of the PE/VM the rax
and rbx registers are set to point to the shared buffer and
the region list, respectively. For a permanent PE/VM, the
VMCS guest-state information is saved and it is reloaded
when the permanent PE/VM is restarted. Therax and the
rbx registers are also set to their initial values as well. How-
ever, the module has to initialize PE/VM memory.

When the PE/VM has completed its execution, and if the
PE/VM is permanent, its VMCS, VM memory, and related
data structures are retained in SMRAM for subsequent ex-
ecution. If the PE/VM is temporary, all of the resources
associated with that VM are released.

3.3 Special Cases

3.3.1 SMI Handling While a PE/VM is Active

When a PE/VM is executing, it is possible that an SMI
may occur. Normally, an SMI causes all processors to go
into SMM. However, the PE/VM processor will not respond
to the SMI as SMIs are inhibited while a processor is in
SMM. Therefore, all the SMI handler processors will hang
waiting for the PE/VM to complete.

To resolve this problem, the STM has to recognize that a
processor is executing a PE/VM when an SMI occurs. If so,
the PE/VM has to be suspended and an SMI handler VM
started in its place. When the STM starts a PE/VM, it sets
a status word to indicate that a PE/VM is executing along
with the associated processor id.

When the STM processes an SMI VM-exit, it queries this
status word to see if a PE/VM is executing. The status



word is protected by a lock, which ensures that only one
processor does this check. If a PE/VM is executing, a non-
maskable interrupt (NMI) is directed to that PE/VM pro-
cessor. When the PE/VM processor receives the NMI, it
does a VM-exit because it has been configured to exit upon
receipt of a NMI®. As a precaution, the STM checks to en-
sure that the NMI received by the processor was not because
of an unrelated problem.

The interrupted PE/VM state is saved and the STM takes
the same path as if it were returning to the MLE. However,
the MLE is never entered because the pending SMI causes a
VM-exit back into the STM®. The STM processes the SMI
VM-exit as normal and starts the SMI handler VM. When
the SMI hander VM has completed, the STM gain control.
The STM checks to see if a PE/VM was interrupted on this
processor. If so, the PE/VM is restarted”.

3.3.2  Obtaining Other Processor State

This section provides a solution where measurement engines
need to determine the state of all the processors in a multi-
processor system. The problem is one of visibility into the
other processors’ state and has been the subject of some
rather convoluted solutions[1]. The solution here uses a sin-
gle interrupt to obtain information from the other processors
and uses the pointers in their respective VMCSs to obtain
the necessary state information.

A vmcall instruction is used by a permanent PE/VM to
request state information of all the processors. To do this,
the STM sends an SMI to the other processors. As a part
of this SMI, the STM sets a flag indicating that the current
processor sent the SMI. When the other processors gain con-
trol, they examine their SMM-transfer VMCS to determine
where to obtain the state information. This state informa-
tion is placed into a buffer that is provided by the caller.

However, determining the exact peer VMCS location needed
to gather the state information from depends whether the
interrupted processor was a root-VM or guest-VM. If the
interrupted processor was a root-VM, the processor state
can be found in the SMM-transfer VMCS guest-state as the
root-VM’s state was transferred to that location during the
VM-exit. If the processor was a guest-VM, the executive-
VMCS pointer has to be followed to the guest-VM VMCS
and the processor state is found in that VMCS’s host-state
fields. The VMCS host-state field holds the processor state
for the root-VM that is loaded when there is a VM-exit.
Once each processor has completed its data gathering, a
flag is set indicating its completion and its peer is resumed.
When the initiating processor determines that data gather-
ing operation has completed in all the other processors, the
PE/VM is resumed. The data requested is returned in a

5 A VM executing in SMM cannot be configured to VM-exit
when an SMI has been received.

SIf there were a way to directly acknowledge the pend-
ing SMI, then the STM could run the SMI handler; when
that completes, acknowledge the SMI; and then restart the
PE/VM.

"A future implementation will allow the PE/VM to request
that a handler be called in the event that the PE/VM was
interrupted by an SMI. This is used to inform the measure-
ment engine that its measurement has become non-atomic.
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buffer provided by the caller.

3.4 Modifications to Xen

This section discusses the changes necessary for the Xen hy-
pervisor to support protected execution. Operating system
support is necessary because the STM can only be entered
via a vmcall instruction while the processor is in a root-VM,
which can only be done in the hypervisor. Also, STM/PE
functioning removes a processor for an extended length of
time. A processer is a resource that is managed by the
hypervisor and it expects to be able to assign work to a pro-
cessor. As a result, the hypervisor must be able to deal with
the loss of a processor. In addition, every processor is as-
signed by the Xen hypervisor the task of fielding interrupts.
If a PE/VM is executing on a processor at the same time an
interrupt managed by the processor occurs, then the fielding
of that interrupt will be delayed until the PE/VM has com-
pleted its task. This is because interrupts are inhibited while
a processor is in SMM. When interrupt processing is delayed,
various problems related to system I/O might occur that are
not recoverable by the operating system. During STM/PE
testing, Xen would either panic, lockup, or attempt to un-
successfully handle what it perceived as a hardware problem
because an interrupt was not processed in a timely fashion.

The process for starting STM/PE is for Xen to be entered
via a hypercall. A hypercall was added to Xen to support
protected execution. This process is illustrated in Figure
6. The Xen STM driver first moves the ModuleInfo data
structure, the executable image (module), and the region list
to a location within Xen. It then converts the guest virtual
addresses within the ModuleInfo and the region list into
physical addresses for the STM’s benefit. Then the STM
driver sets up an available processor to be used for STM/PE
and then assigns that to the STM/PE CPU pool. It then
schedules a tasklet on the processor to be used for STM/PE.
A tasklet is a Xen task that provides system services such
as clock management and is attached to a specific processor.
The hypercall then returns control to the guest-VM, where
the software polls for the status of the PE/VM execution.



When the tasklet starts, it first removes its processor from
the online map and has the processor’s interrupts reallocated
to other processors. This is done to fool Xen into thinking
that the processor is not there. Then the tasklet executes
a vmcall instruction, which then causes a VM-exit in the
STM. The STM continues as descibed in Section 3.1.3. Once
the PE/VM has completed and returned, the tasklet regains
control. The tasklet then updates a status word depending
upon the return status and the type of request sent to the
STM. After this, it places the processor back onto the CPU
online map and the processor waits in an idle loop.

As can be inferred from the previous paragraphs, the hy-
percall returns to the calling VM with status information
indicating that the STM/PE was properly setup. Since the
PE/VM executes on a separate VM, the initiating guest-VM
must poll the Xen STM driver to determine when results are
ready or any other PE/VM status. Once there are results
available, the initiator then has to request that Xen copy
the contents of the shared buffer to a location local to the
calling VM.

4. PE/VM APPLICATIONS

SMM is used as a protected execution environment for sev-
eral defensive mechanisms that monitor hypervisor integrity
[1, 20, 17]. However, the downside of using SMM for these
mechanisms is that they all have to share the same ad-
dress space with the SMI handlers. This means that the
SMI handlers have to be trusted, which increases the size
of the trusted software. The functions of the SMI handler
and the hypervisor integrity monitors are mutually exclusive
and both functions should reside in separate address spaces.
STM/PE provides a viable base for these defensive mecha-
nisms to function from. The STM can maintain separation
between a hypervisor integrity monitor and the SMI han-
dlers. In addition, as shown in a previous section, STM/PE
can also provide state for the current processor and other
processors as well, which removes the need for convoluted
methods for obtaining processor state[1]. Finally, STM/PE
limits the memory access allowed for an integrity monitor.
An example of this access limiting is shown in the discussion
about XHIM in the following section.

4.1 XHIM

In Section 2.1, a list of requirements was specified for XHIM’s
proper functioning that STM/PE meets. To obtain other

processor state, STM/PE obtains this information in a straight-

forward manner as discussed in Section 3.3.2. STM/PE
meets the self-containment requirement by providing a pro-
tected execution environment for XHIM that neither a host
process nor an SMI handler can access. In this environment,
XHIM can function without interference from other code ex-
ecuting and from I/O as well. Finally, the requirement to
ensure that XHIM does not change during execution is met
by ensuring that the XHIM text pages are read-only. This
is done by setting the page tables that define the module’s
executable area to read-only.

4.2 Virtual Trusted Platform Module

STM/PE provides a low cost alternative to improve the as-
surance for a virtual trusted platform module (vIPM). The
normal implementation for a vI'PM is for it to be located

somewhere in physical memory. Preferably, a vIPM should
be located within a trusted VM. However, this still leaves
sensitive data such as a private key vulnerable to hard-
ware tampering attacks and also to vulnerabilities in the
hypervisor. Using a co-processor mitigates these problems,
but at a high cost, which limits this type of assurance to
security-sensitive environments that can afford the cost[4].
The amount of SMRAM available to the STM would dictate
how a vTPM would be structured. At a minimum, functions
that have to deal with sensitive data would be implemented
on a STM/PE VM, with the remaining vI'PM functions lo-
cated on a trusted VM. On a platform that assigns the STM
a larger memory space, a vI'PM could be fully implemented
on a PE/VM. In ether case, STM/PE increases the assur-
ance of a vI'PM without adding expensive hardware to the
platform.

5. COMPARISON TO OTHER WORK
5.1 Flicker

An example of protected execution is Flicker[15], which uses
the D-RTM][7] as a means to protect the application. When
D-RTM has completed, the platform is placed into a known
state. In this state, only a single processor is active and all
other processors are idle. The memory is protected from I/O
and only the software in the MLE is executing. Though this
is a viable method to provide protected execution, it practi-
cality is limited because there is significant overhead to enter
the protected environment and the platform is dedicated to
executing the module needing to be protected.

5.2 SICE

SICE is an example of protected execution that is imple-
mented on the AMD x86 processor[2]. Like STM/PE it
provides an isolated VM environment for a workload. SICE
utilizes the protections provided by SMM, and some trusted
software to manage the separation. In a multiprocessor en-
vironment, SICE supports concurrent isolated environments
to run alongside an untrusted host.

The differences between SICE and STM/PE are a result of
the differences between the SMM implementations for the
AMD and the Intel x86 processors. AMD’s SMM has a single
addressing mode that is akin to Intel’s big real mode, which
is real mode with 32-bit addressing. Intel’s SMM has VTX
support, which allows for the STM. The memory area of the
TSEG is defined on each processor for AMD and can span
different address ranges. Also, the TSEG definition can be
modified at any time in AMD. This feature is used by SICE
to separate its virtual machines by setting each processor to
a different TSEG value. The Intel TSEG configuration is in
the chip set, applies to all processors, and can not change
after it is set. The AMD TSEG memory has a maximum
size of 4GB while Intel currently limits the TSEG to 8MB.
Another significant architectural difference is that the Intel
processor can execute a vmcall instruction to enter the STM
on a single processor. SICE can be entered only by an SMI,
which causes all processors to enter SMM, which includes
any PE VMs that are executing.

Because of the differences in the processor SMM implemen-
tations, SICE has a more complicated software organiza-
tion than that of STM/PE. The SICE software consists of



two trusted parts: an SMI handler and a security manager.
When a protected execution is requested, an SMI is triggered
causing the processors to enter SMM giving SICE control.
To run a PE module®, a virtual machine has to be started up
in a non-SMM environment. Since the SMI handler cannot
directly change privileged processor registers, a rsm instruc-
tion would result in a return to the caller. To allow the
security manager to gain control, the SMI handler modifies
the page tables to point to the security manager instead
of the original return point. Also, before the rsm instruc-
tion is executed, the SMI handler has to change the TSEG
configuration for that processor so that the both the secu-
rity manager and the PE module are no longer in SMRAM.
This is done because a VM cannot run in SMM. The other
processors will not have visibility into this environment, as
their processor specific TSEG configurations will make them
consider this area as SMRAM?. Once the security manager
gains control after the rsm instruction, it sets up and runs
the PE/VM. In contrast, the same action done by the STM
is a matter of switching VMCSs and the VM executes within
SMRAM.

Both SICE and STM/PE provide similar execution environ-
ments in that they both provide a configurable VM for the
PE module and a shared memory area, outside of SMRAM,
that is used for communications between the protected en-
vironment and the host environment. The major difference
here is that STM/PE is limited on the amount of mem-
ory available for protected execution. Also, They differ on
how long a protected execution is allowed to exist. With
SICE, all protected executions are permanent and exist un-
til the PE module decides to terminate. On the other hand,
STM/PE categorizes PE modules into two categories: per-
manent, which exists as long as the STM exists, and tempo-
rary, which exists only for the duration of the computation.

SICE has to co-exist with the SMI handler, which means the
SICE TCB includes the SMI handler along with the SICE
components. To get around this issue, either the BIOS ven-
dor incorporates SICE as a part of the SMI handler or that
SICE relocates the SMI handler and uses memory protec-
tion to isolate the handler. In either case, the SMI handler
shares the same memory space, as SICE or the SMI handler
would not have the protections given to it by SMM since it
would be outside of SMRAM. STM/PE does not have this
issue as the STM isolates the SMI handler and, thus, can
protect itself from the SMI handler.

6. SUMMARY

This paper has presented a protected execution implemen-
tation that utilizes the capabilities of the x86 hardware. A
modified STM provides the capability to provide additional
VMs that support protected execution. This capability in-
cludes allowing a permanent module to be established during
the MLE and also allows for a temporary module needing

8In SICE terminology, this is the ”isolated environment.”
Tt is unknown what effect this configuration (not all TSEGs
having the same memory range in a MP system) has on the
DMA protections that SMRAM is supposed to have. The
AMD documentation only refers to SMRAM being protected
from processor access. The SICE authors noted: "SICE can-
not rely on hardware DMA exclusion,” and they had no idea
on how AMD hardware handled this case.

PE during normal system operations. To facilitate these ca-
pabilities, an interface was developed for the Xen hypervisor.
The objective of this effort is to make this implementation
available when Intel releases the STM specification and ref-
erence code.

Previous attempts to utilize SMM as a protected location
for system measurement always encountered the difficult is-
sue of dealing with the SMI handler. Past solutions to the
problem have been to not have the SMI handler in SMM,
or have the measurement engine co-exist with the SMI han-
dler. Neither of these options is viable from a security nor
a maintenance perspective. An unmodified STM contains
the actions of the SMI handler by placing it into a virtual
machine and using the page tables and the I/O permissions
to limit access.

Adding PE to an STM allows modules to enjoy a protected
environment that is separate from the SMI handler. In ad-
dition, measurement engines will be allowed to access only
the resources that they need to measure, and not full system
access. STM/PE improves the security of the platform by
constraining the SMI handlers, and providing a protected
location for modules to execute along with constraining the
actions of these modules.

Future work will include measurement support. A measure-
ment engine will need some secret to sign the measurement
report. This secret is either injected by the STM or the mea-
surement engine obtains it from the TPM. Also, the STM
needs to be able to attest to a remote party about the SMI
handler as well. The current thinking is to have an addi-
tional PE/VM that does this function.

One issue that does not get much attention is that the op-
erating system or hypervisor, has to be that SMM is being
used for protected execution. Currently, the SMI handler
has timing constraints to prevent problems such as lost in-
terrupts from affecting the system[9]. Measurement engines
typically take a longer time than then limitations placed on
SMI handlers. Therefore, the operating system has to be
able to cope with a processor disappearing. In the Xen test-
ing, the only methods are to decouple the processor from
the operating system or to dedicate a processor to protected
execution.

STM is a vital part of TXT in that it prevents a malicious
SMI handler from subverting TXT. By extending the STM
to support protected execution, an additional benefit is real-
ized because platform measurement has a protected location
to function and functions such as vI'PM can have their se-
curity critical functions protected from the system. In sum-
mary, STM/PE adds additional security functionality to the
platform using only the capabilities of the x86 processor and
with minimal modifications to the STM.
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APPENDIX
A. APPENDIX - STM/PE VMCALL INTER-
FACE

The STM/PE vmcall instruction interface is an extension
of the STM wvmcall instruction interface between the MLE
and STM described in the Intel STM specification[8]. It
adds four calls to the interface, two to add a PE/VM, one
to run a permanent PE/VM, and the fourth one to disable
he loading of PE/VMs.

The STM/PE vmcall instruction interface adds an addi-
tional data structure to the STM vmcall instruction inter-
face. This data structure tells the STM how to configure a
PE/VM, defines the memory layout for the portion of the
guest-VM that is located within SMRAM, and states the
hardware physical memory locations for the shared region
and the read-only regions used by the PE/VM. A compre-
hensive set of status returns are provided to inform the caller
of any errors encountered during PE/VM setup and execu-
tion. Following is an explanation of the ModuleInfo data
structure used in the interface.

struct ModuleInfo{

UINT64 ModuleAddress;
UINT64 ModuleLoadAddress;
UINT32 ModuleSize;
UINT32 ModuleEntryPoint;
UINT64 AddressSpaceStart;
UINT32 AddressSpaceSize;
UINT32 VMConfig;

UINT64 CR3Load;

UINT64 SharedPage;

Struct region * Segment;

UINT32 SharedPageSize;
UINT32 reserved;

ModuleAddress - Machine physical address of the location
in system memory where the module to be loaded into the



PE/VM is located. This location is in either application
memory or kernel memory. It is not in SMRAM.

ModuleLoadAddress - Module guest physical load address
in PE/VM, must be located within the range AddressS-
paceStart : (AddressSpaceStart + AddressSpaceSize)

ModuleSize - Module size in bytes

ModulEntryPoint - Entry point, relative to the start of the
module and located within the module’s address range.

AddressSpaceStart - Start of the guest physical address
space on the PE/VM. The machine physical pages mapped
into this guest address space are located within the MSEG.
However, they can be mapped anywhere into the guest phys-
ical address space. This is the only area within the PE/VM
that is not identity mapped. Since the physical pages are
located within the MSEG, they are protected in the same
manner

AddressSpaceSize - Size of the guest physical address space
block to be allocated for the executable module and data
areas. Realistically, this should be no larger than 1MB as
this is limited by how much MSEG space is available after
the STM has allocated the space that it needs.

VMConfig - Configuration of the PE/VM. Any combination
of values that would result in an illegal VM configuration
will result in the PE/VM not being started and an error
return to the caller. Allowed values are as follows:

SET_CS_L (1 << 13) CS.L - set 64-bit mode for CS (valid
only when SET_TA32E = 1)

SET_CS_D (1 << 14) CS.D - Default mode, 0: 16-bit seg-
ment; 1: 32 bit segment. NOTE: CS.D must be zero when
CS.L=1 or VMX will not allow the VM to start

SET_IA32E (1 << 15) sets IA32 mode; when 1 then CR0.PG,
CRO.PE, & CRO.PAE will be set to 1 as well

SET_CRO_PG (1 << 31) sets CR0.PG



